Centre No.						Pape	er Refe	ence			Surname	Inntie	a1(3)
Candidate No.				4	4	3	7	/	5	H	Signature	,	
	•	er Reference									E	xaminer's us	se only
	I	ωn	do	n 1	Ex	an	nin	ati	ior	ıs]	IGCSE		
			nce								lea lea	m Leader's ι	use only
	_		mist									Question Number	
			r 5H									1	
		di	gh	eı	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֡֓֓֡֓֡֓	ľĺ	er					2	
		•	esda						Afte	erno	on	3	
	T	ime:	1 hc	our	30 ı	min	utes					4	
			_	- 0	_			_				5	
	Ma Ni		require	d for	exami	nation	$-\frac{\mathbf{It}}{\mathbf{N}}$		cluded	d with	question papers	6	
												7	
												8	
Instructions	to Candio	dates										9	
signature.	rence is sho he question es in any ca	own at the lculation	the top	of this prov	s page ided i	. Che	ck tha	t you l	nave t		nd initial(s) and your rect question paper.	10	
Information	for Cand	idates											
e.g. (2) . There are 20 p A Periodic Tab	pages in this	s questi	on pape		,	•	•			iown i	n round brackets:		
Advice to Ca	<u>andidat</u> es												

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. $\ensuremath{\mathbb{C}} 2008$ Edexcel Limited.

Write your answers neatly and in good English.

 $\begin{array}{c} {\rm Printer's\ Log.\ No.} \\ H31409A \\ {\rm W850/U4437/57570} \\ \end{array}$

Turn over

Total

	0	Helium 2	Neon 10 4 Argon	Krypton 36 36 Xenon 54 84	Radon 86	
	7		Fluorine 9 35.5 Chlorine	80 Branine 35 127 127 Iodine 53	Astatine 85	
	9		16 Oxygen 32 Sulphur	Selenium 34 128 Tellurium 52 55	210 Polonium 84	
	22		Nitrogen 7 31 31 Phosphorus	Arsenic 33 122 Sb Antimony 51	209 Bismuth 83	
	4		Carbon Carbon 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Germanium 32 Sn Tin 50	Pb Pb Lead 82	
	ო			Gallium 31 115 Indium Indium 149		
				65 Zn Zinc 30 112 Cd Cadmium 48		
THE PERIODIC TABLE				63.5 Cu Copper 29 108 Ag Silver 47		
IODIC				Nickel Nickel 28 106 Palladium 46	Platinum 78	
E PER				Co Cobait 27 103 Rhodium 45	1	
<u>F</u>				56 Fe Iron 26 101 Ruthenium 4		و
	Group	Hydrogen		Mn langanese 25 99 T C echnetium	186 Remium 75	Key Relative atomic mass Symbol Name Atomic number
	J			52 55 Cr Mn Chromium Manganese 24 25 89 Molyddenum Technetium 42 44 43 44 44 44 44 44 44 44 44 44 44 44	Tungslen 74	
				Vanadium C 23 93 Niobium M 41		
				48 Ti Ttanium 22 91 Zirconium 40		
				Scandium 2		
	8		9 BBe Beryllium 4 24 Mg Magnesium	Calcium S Calcium S S Calcium S Calc	Barium La Se	
	v-		Lithium B 3 3 23 Sodium Mg		133 CS Caesium 55 223 Francium 187	
		Period 1	α σ	4 rv	9 7	

Leave blank

SECTION A

1. The diagram shows how aluminium is extracted on an industrial scale.

(a) (i) Name the process used to extract aluminium.

(1)

(ii) Name the material used for the electrodes A and B.

	(1)

(iii) Using the symbols + and – identify the polarity of the electrodes A and B.Write one symbol in each circle in the diagram above.

(1)

(iv) Identify the two compounds present in liquid C.

1	••
2	

(v) State **one** major cost that makes this process more expensive than the extraction of iron.

(1)

(2)

(i) Identify the element. (ii) Identify the compound and explain how it forms. Compound	(ii) Identify the compound and explain how it forms. Compound	(ii) Identify the compound and explain how it forms. Compound	(ii) Identify the compound and explain how it forms. Compound
(ii) Identify the compound and explain how it forms. Compound Explanation of formation (2)	(ii) Identify the compound and explain how it forms. Compound Explanation of formation (2)	(ii) Identify the compound and explain how it forms. Compound Explanation of formation (2)	(ii) Identify the compound and explain how it forms. Compound Explanation of formation (2)
Compound Explanation of formation			
Explanation of formation	Explanation of formation	Explanation of formation	Explanation of formation
(2)	(2)	(2)	(2)
(2)	(2)	(2)	(2)
(Total 9 marks)	(Total 9 marks)	(Total 9 marks)	(Total 9 marks)

5

Turn over

		e characteristic of a homologous series is that all its members have the same eral formula.
	(i)	State two other characteristics of a homologous series.
		1
		2
		(2)
	(ii)	What is the name of the homologous series to which ethene belongs?
	` /	
		(1)
b)	(1)	Use the Periodic Table to help you complete the diagrams to show the electronic
		configuration of hydrogen and of carbon.
		H) (C)
		H (2)
		(H) (C)

			Leave
	(ii)	Draw a dot and cross diagram to show the covalent bonding in a methane molecule.	blank
		(2)	
(c)	The	e alkane C_4H_{10} exists as two isomers.	
		What are isomers?	
	(1)	, in the case is said to the case of the c	
		(2)	
	(ii)	Draw the displayed formula of each isomer.	
		(2)	Q2
		(Total 11 marks)	

Leave
blank

. Ca	lcium	and magnesium are metals in Group 2 of the Periodic Table.
(a)	the	tudent adds a piece of calcium to some cold water in a beaker. The products of reaction are calcium hydroxide and hydrogen. Some of the calcium hydroxide solves in the water and some does not.
	(i)	Describe two observations that the student could make during the reaction.
		1
		2
		(2)
	(ii)	Give the formula of calcium hydroxide.
		(1)
	(iii)	When the reaction is complete, a piece of litmus paper is added to the solution in the beaker. State the final colour of the litmus paper and what this colour indicates about the solution.
		Final colour of litmus

(b)	The diagram shows apparatus for reacting magnesium with steam.	Leave blank
	magnesium ribbon	
steam_		
	heat	
	The products of this reaction are magnesium oxide and hydrogen.	
	(i) State the colour of magnesium and of magnesium oxide.	
	Magnesium	
	Magnesium oxide(2)	
	(ii) State two ways in which the hydrogen could be collected. 1	
	2	
	(2)	
	(iii) The hydrogen gas can be burned as it leaves the heated tube. Write a word equation for this reaction.	
	(1) (Total 10 marks)	Q3
	TOTAL FOR SECTION A: 30 MARKS	

4. (a) A crystal of copper(II) sulphate is dropped into a test tube full of water. The crystal sinks to the bottom and starts to dissolve, turning the water blue. (i) Name the process that occurs after the copper(II) sulphate has dissolved. (1) (ii) Describe how this process occurs. (2) (b) A sample of the solution is removed from the test tube. Dilute ammonia solution is slowly added to the sample until in excess. (i) Describe what you would see as ammonia solution is added. (3) (ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution.				SECTION B	Lea blar
(i) Name the process that occurs after the copper(II) sulphate has dissolved. (1) (ii) Describe how this process occurs. (2) (b) A sample of the solution is removed from the test tube. Dilute ammonia solution is slowly added to the sample until in excess. (i) Describe what you would see as ammonia solution is added. (3) (ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution.	4.	(a)			
(ii) Describe how this process occurs. (2) (b) A sample of the solution is removed from the test tube. Dilute ammonia solution is slowly added to the sample until in excess. (i) Describe what you would see as ammonia solution is added. (3) (ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution.					
(b) A sample of the solution is removed from the test tube. Dilute ammonia solution is slowly added to the sample until in excess. (i) Describe what you would see as ammonia solution is added. (ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution.				(1)	
(b) A sample of the solution is removed from the test tube. Dilute ammonia solution is slowly added to the sample until in excess. (i) Describe what you would see as ammonia solution is added. (3) (ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution.			(ii)	Describe how this process occurs.	
(b) A sample of the solution is removed from the test tube. Dilute ammonia solution is slowly added to the sample until in excess. (i) Describe what you would see as ammonia solution is added. (3) (ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution.					
slowly added to the sample until in excess. (i) Describe what you would see as ammonia solution is added. (3) (ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution.				(2)	
(ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution. (1) Q4		(b)			
(ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution. (1) Q4			(i)	Describe what you would see as ammonia solution is added.	
(ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution. (1) Q4					
(ii) Give the formula of the copper-containing species present after the addition of excess ammonia solution. (1) Q4					
excess ammonia solution. (1) Q4				(3)	
			(ii)		
				(1)	04
(Total 7 marks)				(Total 7 marks)	

(a)	(i)	Describe what is seen when a small piece of sodium is dropped onto water.
		(3)
	(ii)	Write a chemical equation for the reaction.
		(2)
	(iii)	Give one observation that will be different if rubidium is used in place of sodium.
		(1)
		(-)
(b)	Sod	ium reacts readily with oxygen to form the ionic compound sodium oxide.
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms react with oxygen atoms.
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms
(b)		The diagram shows the electron configuration of an atom of sodium and an atom of oxygen. Describe, in terms of electrons, what happens when sodium atoms

(11)	Sodium oxide has a melting point of 1275 °C. Explain why sodium oxide has a high melting point.	
	(3)	
	(Total 12 marks)	

			Leave blank
6.	(a)	Magnesium chloride is a soluble salt that can be made by reacting magnesium carbonate with dilute hydrochloric acid. Magnesium carbonate is insoluble in water.	Oldlik
		Describe how you could make a dry sample of magnesium chloride crystals from magnesium carbonate and dilute hydrochloric acid.	
		(5)	
	(b)	Some dilute sulphuric acid is placed in a conical flask. A few drops of phenolphthalein indicator are added to the acid. Dilute sodium hydroxide solution is then added gradually. The chemical equation for the reaction is	
		$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$	
		What colour change is seen when the acid is neutralised?	
		(2)	Q6
		(Total 7 marks)	

a) (i)	Describe the test, and the positive result expected, that she can do to see if the solid is a carbonate.
	(2)
(ii)	Carbon dioxide reacts with sodium hydroxide solution to form sodium carbonate and water. Write a chemical equation for this reaction.
	(2)
` '	lium carbonate is also formed when sodium hydrogencarbonate is heated strongly. e chemical equation for the reaction is
	$2NaHCO3(s) \rightarrow Na2CO3(s) + H2O(g) + CO2(g)$
4.2	g of sodium hydrogencarbonate is heated until it is fully decomposed.
(i)	Calculate the amount, in moles, of sodium hydrogencarbonate used.
	(3)
(ii)	Calculate the amount, in moles, of carbon dioxide formed.
	(1)
(iii)	Calculate the volume, in dm ³ , measured at room temperature and pressure (rtp),
	of carbon dioxide formed. The volume of one mole of any gas at rtp is 24 dm ³ .
	(1)

	7
Leave	
hlank	

8. The table gives some information about elements in Group 7 of the Periodic Table.

Name	State at room temperature	Boiling point/°C	
chlorine	gas	-35	
bromine	liquid		
iodine	solid	184	

(1)				
				T.C.
nt reaction takes	ed to sunlight a viole		mixture of hydrogen e. The only product:	
		ation for the reaction	Write a chemical equ	(i)
				(-)
(2)				
	s into separate sample quid with universal case.	e then tests each l		
		water	Hydrogen chloride in	
		methylbenzene	Hydrogen chloride ir	
		j	<i>y C</i>	
(4)				
(Total 7 marks)	(
	(

The	e list gives the order of reactivity of some metals.
	most reactive magnesium zinc iron copper least reactive silver
(a)	Iron is sometimes coated with zinc to prevent the iron rusting. The iron does not rust even if the coating of zinc becomes damaged.
	(i) What is the name given to this method of rust prevention?
	(ii) Give one example where this method of rust prevention is used.
	(ii) Give one example where this inclined of fust prevention is used.
	(1)
	(iii) Explain how this method of rust prevention works.
	(2)
(b)	The reaction that occurs when zinc is added to silver nitrate solution is
	$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$
	State, with a reason, which substance is oxidised.
(-)	(2)
(c)	A student is given some solid nickel nitrate and several small pieces of magnesium, zinc, iron, copper and silver. Describe and explain how he can find the position of nickel in the reactivity series given above.
	(3)
	(Total 9 marks)

Leave	
l. 1 1 .	

10. (a) Ethanol can be dehydrated to form ethene.

$$C_2H_5OH \rightleftharpoons C_2H_4 + H_2O$$
 $\Delta H = +35 \text{ kJ/mol}$

State, with a reason, the effect of increasing the temperature on the equilibrium yield of C_2H_4 .

.....

(2)

(b) Ethene forms an addition polymer, poly(ethene).

Draw the structure of poly(ethene), showing at least 4 carbon atoms in your structure.

(2)

(c) An organic compound has the composition 38.7% carbon, 9.70% hydrogen and 51.6% oxygen by mass. The relative formula mass of the compound is 62. Calculate the empirical and molecular formulae of the compound.

Q10

(Total 9 marks)

(5)

TOTAL FOR SECTION B: 60 MARKS

TOTAL FOR PAPER: 90 MARKS

END

